Sunday, 11 December 2016

Gleitender Mittelwert 2d

Berechnen des gleitenden Durchschnitts Dieses VI berechnet und zeigt den gleitenden Durchschnitt mit einer vorgewählten Zahl an. Zunächst initialisiert das VI zwei Schieberegister. Das obere Schieberegister wird mit einem Element initialisiert und fügt dann kontinuierlich den vorherigen Wert mit dem neuen Wert hinzu. Dieses Schieberegister hält die Summe der letzten x Messungen. Nach dem Teilen der Ergebnisse der Add-Funktion mit dem vorgewählten Wert berechnet das VI den gleitenden Mittelwert. Das untere Schieberegister enthält ein Array mit der Dimension Average. Dieses Schieberegister hält alle Werte der Messung. Die Ersatzfunktion ersetzt nach jeder Schleife den neuen Wert. Dieses VI ist sehr effizient und schnell, weil es die replace-Element-Funktion innerhalb der while-Schleife verwendet, und es initialisiert das Array, bevor es die Schleife eintritt. Dieses VI wurde in LabVIEW 6.1 erstellt. Bookmark amp ShareCreated am Mittwoch, den 08. Oktober 2008 um 20:04 Uhr Zuletzt aktualisiert am Donnerstag, den 14. März 2013 um 01:29 Uhr Geschrieben von: Batuhan Osmanoglu Zugriffe: 40786 Moving Average In Matlab Oft finde ich die Notwendigkeit einer Mittelung der Daten, die ich habe, um das Rauschen zu reduzieren ein bisschen. Ich schrieb paar Funktionen, um genau das tun, was ich will, aber Matlabs in Filter-Funktion gebaut funktioniert auch ziemlich gut. Hier schreibe ich über 1D und 2D Mittelung von Daten. 1D-Filter kann mit der Filterfunktion realisiert werden. Die Filterfunktion erfordert mindestens drei Eingangsparameter: den Zählerkoeffizienten für den Filter (b), den Nennerkoeffizienten für den Filter (a) und natürlich die Daten (X). Ein laufender Mittelwertfilter kann einfach definiert werden: Für 2D-Daten können wir die Funktion Matlabs filter2 verwenden. Für weitere Informationen, wie der Filter funktioniert, können Sie eingeben: Hier ist eine schnelle und schmutzige Implementierung eines 16 von 16 gleitenden durchschnittlichen Filters. Zuerst müssen wir den Filter definieren. Da alles, was wir wollen, gleicher Beitrag aller Nachbarn ist, können wir einfach die Funktion verwenden. Wir teilen alles mit 256 (1616), da wir nicht den allgemeinen Pegel (Amplitude) des Signals ändern wollen. Zur Anwendung des Filters können wir einfach sagen, die folgenden Unten sind die Ergebnisse für die Phase eines SAR-Interferogramms. In diesem Fall ist der Bereich in der Y-Achse und der Azimut auf der X-Achse abgebildet. Der Filter war 4 Pixel breit im Bereich und 16 Pixel breit im Azimut.


No comments:

Post a Comment